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Abstract

In this paper we review some results on longitudinal beam dynamics obtained in the

framework of the Thermal Wave Model (TWM). In this model, which has recently shown the

capability to describe both longitudinal and transverse dynamics of charged particle beams,

the beam dynamics is ruled by SchrSdinger-like equations for the beam-wave-functions, whose

squared modulus is proportional to the beam density profile. Remarkably, the role of the

Planck constant is played by a diffractive constant e, the emittance, which has a thermal
nature.

1 Introduction

Recently, on pure basis of analogy with other similar subjects of physics, a new technique to derive

the equation of motion for a thermal system, like a charged particle beam at finite temperature,
which is able to take into account the collective behaviour of the ensemble has been obtained

[1]-[5].

The starting point of this technique, the Thermal Wave Quantization (TWQ), are the equations

of motion of the considered system, in the so called single-particle approximation, from which is

possible to obtain the single-particle hamiltonian of the system. At this point, the formal anal-

ogy showed in the case of the transverse dynamics for relativistic charged particle beams, with

the electromagnetic optics in paraxial approximation and with the two dimensional nonrelativis-

tic quantum mechanics [1], suggests to replace the single-particle hamiltonian, with a differential

operator, and the hamilton-equations with a SchrSdinger-like equation, in which coordinate and

particle momentum are replaced by a beam-wave-function.

This technique, applied to the longitudinal and transverse beam dynamics, has led to the for-

mulation of the Thermal Wave Model (TWM) for relativistic charged particle beam propagation,

which represents a useful quantum-like description of the total beam optics [1]-[5]. This model has

already been successfully applied for estimating the effects of the aberrations in linear colliders

[3], [5], as well as for describing nonlinear beam-plasma interaction [2], and nonlinear longitudinal

dynamics in circular accelerating machines [4].
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2 TWM for longitudinal dynamics

Let us consider a single relativistic particle of electric charge q, within a stationary bunch, travelling

with longitudinal velocity tic (fi __ 1) in a circular accelerating machine of radius R0 = cTo/2_r (To

being the revolution period). Its longitudinal motion is described, neglecting radiation damping

and quantum excitations, by a pair of equations which, defining s = ct (t being the time), can be

put in the following dimensionless form [6]

dx AE
: r/79 , (1)

d-_ -- _TEo

d79 qA V

d--'£ = cToEo ' (2)

where x is the longitudinal particle coordinate and 79 - AE/Eo is the dimensionless longitudinal

energy variation, after a turn in the ring. Note that x (-_rR0 <_ x _< rR0) and :P are both evaluated

with respect to the synchronous particle (AE = 0), and E0 is the synchronous particle energy.

The quantity AV represents the total voltage variation after a turn and it takes into account

the interactions of the particles with the surrounding medium (RF-cavities, pipe, kickers, etc.).

Consequently, the equations (1) and (2) describe the longitudinal bunch dynamics on time scale

t >> To. Furthermore, in (1) the parameter 71is defined as r/=- (Aw/wo)/(AE/Eo) (Wo = c/Ro

and Aw being the frequency shift with respect to w0). By defining the momentum compaction

a = (AR/Ro)/(AE/Eo), where AR is the orbit radius variation with respect to R0, it can be

easily proved that r/= 1/7 2 - a. From (i) and (2) we can easily write the following dimensionless

single-particle hamiltonian
1 2

g=_r/79 +U , (3)

where

1 /oXU = cToEo qAV dx' (4)

In order to find an equation which describes the longitudinal evolution of the beam, taking into

account its thermal spreading (longitudinal emittance) while it interacts with the surrounding

medium (potential well and wake fields), we follow the quantum-analogy, which suggests to use in

(3) the following correspondence rules

0 0

79 --. 7_ = - i _L _ x and H ---* [-I =-- i eL -_s , (5)

where _L is the longitudinal beam emittance. Thus, by considering (3) and (5), the following

Schrbdinger-like equation for the beam wave function (bwf) _ can be assumed

ieL__s = /2/_ , (6)

where/:/ = _52 + U. Consequently, (6) becomes

_EL _ "-
+ U_ (7)

20x 2
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Note that (7) describes the longitudinal beam dynamics in terms of the bwf 4, which we as-

sume to be related to the longitudinal density number A(x,s) through the following relation:

A(x, s) -- A0[q_(x,s)[ 2, where Ao = N/Ro (N being the total number of particle in a bunch).

According to the previous definitions, [_[2 gives the longitudinal beam density profile. Further-

more, the circular topology of the ring should requires periodic solutions for qJ, with respect to

x (q2(TrRo, s) = q2(-rRo, s) and O_g2(TrRo, s) - O_qY(-TrRo, s)). In these conditions, from (7) the

norm squared (A/_) of bwf, defined as

f+_R0:.P - I (x,s)l 2 dx , (8)
J-_rRo

is conserved (U is assumed a real function), and it has been fixed for simplicity equal to Ro. This

result is compatible with the physical requirement that f+_ A(x, s) dx = N. However, in the

following we restrict our analysis to consider bunched beam whose effective length is much smaller

than R0. Under this assumption, the above conditions of periodicity of qJ do not have a relevant

role, because in this limit, for the bunch, the ring looks like an infinite linear accelerator. Thus

we can define the effective bunch length aL, and the expectation value of the momentum 75 as

] 1/2= - L ax I , (9)

and in complete analogy to quantum mechanics the uncertainty principle

aL aPL >_ eL�2 (10)

holds. Furthermore, note that (7) l/r/plays the role of an effective mass.

2.1 The interaction potential and synchrotron oscillations

As it has been shown in Ref. [4], the potential U can be split in two parts (RF + Self-interaction)

and (4) becomes: U = Unf -4- Us. Note that whereas in general URr is a known function of x

and s, the explicit expression for Us, depending on the bunch density (collective effects), needs

particular assumptions about the beam interaction with the surrounding medium to be specified.

This interaction can be parametrized in terms of the longitudinal coupling impedance [7]. In the

special case of a linear approximation for the RF-potential, URp = _xlK _2, where K is the cavity

strength ( IKI is the synchrotron wave number), and for a purely reactive longitudinal coupling

impedance X, the equation for bwf becomes

Os - 2 Ox 2 + Kx2_ - ri2-_o

where I is the beam current, and n is the so-called harmonic number [8]. In the simplest case of

(X = 0) and for R0 >> aL, the Eq. (11) can be exactly solved, and the normalized solutions for

bwf are the well known Hermite-Gauss modes as it occurs in complete analogy for electromagnetic

optics in paraxial approximation [9]

( ) [ ]exp -_ x x 2
g2,,(x,s) = H,n exp i + i(1 + 2m)q_L(S) (12)

'/' 2 L'TPL( )
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In (12) the functions aL(s), pL(8) and _9L(8 ) are solutions of the following system of differential

equations
d20"L E2_ 2

_82 +I_0" L _ = 0 , (13)

1 1 doL

pL - aL ds ' (14)

d_)L _LT_
- (15)

ds 4aPL

and H,.(x) axe the Hermite-polynomials with m a non-negative integer. Note that I_,.] 2 for m = 0

(fundamental mode) gives a Gaussian particle distribution. Remarkably, it can be easily proved

that (13) is completely equivalent to

d2a_ 1 (d_L_ 2 e_2 I 2

ds 2 + 4Ka_ = 4E with E= _ _ ds ) + _ + 2 KaL = c°nst" (16)

In this form it is easily to recognize that the equation for aL(S) (16), i.e. (13), describes the

synchrotron oscillations. The equilibrium condition d2aL/dS 2 = 0 gives

I,IRo 07)

where a ° and a_ are the equilibrium value of aL and a_, respectively, and Vo is the synchrotron

number given by the ratio between the synchrotron frequency i2, _ c _Vq-_ and the revolution

frequency Wo [10]. Equational7) recovers the well known relationship between the bunch length
a ° and the energy spread a L [10]. Since for the present case the bwf is Gaussian, in obtaining

(17) we have introduced the minimum value a°a_L= eLl2 of the product aLaPL consistently with

disequality reported in section 2.

3 Coherent stability criterion and soliton solution

In this Section, we develop, within the framework of the thermal wave model, an analysis of some

collective effects occurring when the bunch interacts with the surrounding medium. To this end,

we consider the special case of RF cavity off and take into account both the space charge effect

and a purely inductive coupling impedance. Consequently, (11) becomes

i_Lrl Os -- 20x 2 _2--_o 1_12_ (18)

Note that (18) is formally identical to the cubic NLS equation which describes the propagation of

an e.m. pulse through a nonlinear medium in paraxial approximation [11],[12],[13]. In this analogy,

the factor eLf/ plays the role of the diffraction parameter (the inverse of the wave number), s

corresponds to the time, and -[71qI (X/n) / (2r E0)]lqJl 2 corresponds to a nonlinear refractive index.

Thus, an analysis of the bunch coherent instability (stability) can be made in complete analogy

to the electromagnetic case [11],[12]. To this aim, applying the well known method developed in
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nonlinear e.m. optics to search for the sufficient conditions of modulational instability, we show

that coherent instability for particle bunches is fully equivalent to modulational instability for e.m.

bunches. Moreover, a soliton-envelope solution, very interesting for accelerator physics, is found.

As an example, we analyze the instability of a plane-wave (_0(x, s) = Po exp[i(kox - _0s)],
where P0 is a positive constant) solution of Eq. (18), when a small perturbation around it is
introduced. Let

• (x,s) = [P0 + pz(x,s)] exp[i(kox - l'_oS) + iOz(x,s)] (19)

be the perturbed solution, being pl and 0z real functions, and

12o = -_- o - 2reLEo P_

In order to obtain the dispersion relation of the system we can assume

(20)

pl(x,s)=p°cos(kx-as+co) 01(x,s)=O°sin(kx-_s+co) , (21)

where .p0, 00, k, _ and Co are real constants. By imposing that (19) is a solution of the linearized
(18) we obtain the following dispersion relation

Reminding that unstable modes occur for _(fl) _ 0, namely

(22)

we get stability for r/X < 0 and instability for fiX > 0. This result recovers the well-known

condition for coherent stability (instability) for monochromatic charged particle beams [14], in

addition we remark that the above condition is fully similar to the Lighthill criterion, valid for

modulational instability of an e.m. plane-wave travelling in a nonlinear medium [11],[12],[13].

For a bunched beam (aL << R0), a solitary solution of (18) is found by looking for a solution
of a relativistic envelope form:

(x,s) = C(x- &s)e , (24)

with X0, w0, and fl0 real numbers. Thus, according to the general theory of NLS equations [11],

the following soliton-like solution for the beam density (A = AoGa), which satisfies (8), is possible
under the condition qX > 0:

where

4dToEo,7(X)' Ch=L2 TToEo,7

xo= Wo= TXo L2 L--ToEo (26)
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4 Conclusions

In this paper, we have reviewed some results and applications of the Thermal Wave Model, showing

in particular, how it is possible to give a novel approach to the study of the nonlinear longitudinal

dynamics of a relativistic particle bunch in circular accelerating machines. Neglecting radiation

damping and quantum excitation, we have shown that the nonlinear interaction between the bunch

and the surroundings (potential well and wake fields) is governed by an appropriate NLS equation

(equation (11)), fully similar to the one that holds for the propagation of an e.m. bunch in a

nonlinear medium in paraxial approximation [11], [12],[13]. Much remains to be done -- like, for

instance, the extension to 2- or even to 3-D, or the development of an iterable formulation --

to make this model really interesting for the study of the typical, still unsolved, beam-dynamics

problems. Nevertheless, its very innovative feature of allowing the treatment of the whole beam

at the same time, makes it look extremely promising for a new, and more complete approach to

the subject.

References

[1] R. Fedele and G. Miele, Nuovo Cimento D 13, 1527 (1991).

[2] R. Fedele and P.K. Shukla, Phys.Rev. A 44, 4045 (1992).

[3] R. Fedele and G. Miele, Phys.Rev. A 46, 6634 (1992).

[4] R. Fedele, G. Miele, L. Palumbo and V.G. Vaccaro, Phys. Lett. A 179, 407 (1993).

[5] R. Fedele, G. Miele, and F. Galluccio, INFN/TC-93/12, to be published in Proc. 1993 Particle

Accelerator Conference. Washington D.C. May 17-20, 1993.

[6] B.W. Montague, CAS Proc., CERN 77-13, 63 (1977).

[7] L. Palumbo and V.G. Vaccaro, LNF-89/035(P), May 1989.

[8] S. Hansen et al., CERN/ISR-RF-DI-TH-OP/75-15, March 1975.

[9] S. Solimeno, B. Crossignani, and P. Di Porto Guiding, Diffraction, and Confinement of Optical

Radiation, (Academy Press, London, 1986).

[10] M. Sands, SLAC Report 121 (1971).

[11] G.B. Whitham, Linear and Nonlinear Waves, (J. Wiley, New York, 1974).

[12] Y.R. Shen, The Principles of Nonlinear Optics, (Wiley-Interscience Publication, New York,

1984).

[13] S.A. Akhmanov, A.P. Sukhuorukov, and R.V. Khokhlov, Sov.Phys.Usp. 93, 609 (1968).

[14] A. Hofmann, CAS Proc., CERN 77-13, 139 (1977).

392


